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Abstract: Between-person differences in white matter microstructure may partly generalize across the
brain and partly play out differently for distinct tracts. We used diffusion-tensor imaging and struc-
tural equation modeling to investigate this issue in a sample of 260 adults aged 60–87 years. Mean
fractional anisotropy and mean diffusivity of seven white matter tracts in each hemisphere were quan-
tified. Results showed good fit of a model positing that individual differences in white matter micro-
structure are structured according to tracts. A general factor, although accounting for variance in the
measures, did not adequately represent the individual differences. This indicates the presence of a sub-
stantial amount of tract-specific individual differences in white matter microstructure. In addition,
individual differences are to a varying degree shared between tracts, indicating that general factors
also affect white matter microstructure. Age-related differences in white matter microstructure were
present for all tracts. Correlations among tract factors did not generally increase as a function of age,
suggesting that aging is not a process with homogenous effects on white matter microstructure across
the brain. These findings highlight the need for future research to examine whether relations between
white matter microstructure and diverse outcomes are specific or general. Hum Brain Mapp 34:1386–
1398, 2013. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Between-person differences in white matter microstruc-
ture may generalize across the brain due to genetic and
environmental effects that play out in a similar manner for
different tracts. However, individual differences may also
be localized, for example, at the level of specific tracts. The
issue of the dimensionality of between-person differences
in white matter integrity is important for the interpretation
of findings based on between-person differences. For
example, it is common to investigate whether white matter
integrity of a particular a priori defined brain region is
related to outcomes such as functional brain activity or
cognitive performance. If such associations reach signifi-
cance, then interpretations are often framed in terms of the
functional relevance of the investigated white matter
region. Appropriate statistical control for the presence of
shared variance across white matter regions is sometimes
applied. However, when this is not done, such interpreta-
tions neglect the possibility that individual differences in
the integrity of the region of interest are associated with
integrity in other regions of the brain and that it is this
shared variance that drives the observed associations
[Penke et al., 2010; Salthouse, 2011]. At the other end of
the spectrum of analytical methods, various whole brain
indices of white matter integrity are constructed. With
such approaches, the extent to which global measures
adequately represent individual differences in white mat-
ter microstructure is unknown. In addition, specific rela-
tions between individual tracts or regions and the
outcome of interest are often not investigated in a satisfac-
tory manner.

Here, we apply structural equation modeling (SEM) to
investigate the dimensionality of white matter microstruc-
ture in a sample of 260 adults aged 60–87 years. These indi-
viduals were measured with diffusion-tensor imaging
(DTI), which we used to assess white matter microstructure
by quantifying mean diffusivity (MD) as well as fractional
anisotropy (FA) of water diffusion. Mean FA and MD were
extracted from seven tracts of interest in each hemisphere,
resulting in 14 observed variables for each DTI metric.
These variables were used in the SEM analyses.

One advantage of SEM is that latent factors can be
formed. The variance of such factors represents the shared
individual differences among the indicators of a factor.
Measurement error is simultaneously, but separately, esti-
mated. If conclusions are drawn from the estimates at the
latent factor level, the influence of error and the biasing
influence of differences in measurement error across meas-
ures are attenuated. In separate analyses of FA and MD,
we used this advantage by specifying a model (Fig. 1A) in
which tract factors represent individual differences com-
mon across hemispheres for a given tract [cf. Raz et al.,
2005]. This theoretical model is based on the long-standing
neuroanatomical principle of tract-based organization of
connections among gray matter areas [e.g., Catani and
Ffytche, 2005; Filley, 2010]. Empirical evidence also sup-

ports such a model of the organization of measures of
white matter microstructure acquired with DTI [Li et al.,
in press; Wahl et al., 2010]. For example, Wahl et al. [2010]
reported that most of the high correlations among means
of FA from a set of 12 tracts were between pairs of homol-
ogous tracts in the left and right hemispheres.

Another advantage of SEM is that the accuracy of a
model’s representation of the data (i.e., the variances and
covariances) can be evaluated. We use this feature here to
examine whether the postulated tract-based organization
of individual differences in white matter microstructure
provides an acceptable representation of the data. In addi-
tion, alternative representations of the data can be exam-
ined, and kept as acceptable alternatives to the original
theoretical model, or rejected because they constitute unac-
ceptable representations of the data. The alternative model
that we examine here posits that between-person differen-
ces generalize across the tracts of interest (Fig. 1B). This is
an extreme alternative to the original model postulating
that individual differences are primarily organized at the
tract level, with individual differences that are shared
between pairs of tracts. Recent exploratory factor-analytic
work indicates that a general factor explains a substantial
amount of variance in white matter microstructure in old
age [Penke et al., 2010; see also Wahl et al., 2010]. We
expected to replicate this finding, but also to find that a
general factor alone provides an inadequate representation
of the data. In other words, although general individual
differences may be one important principle, individual dif-
ferences that are specific for tracts and pairs of tracts were
predicted to be principles of the organization of white
matter microstructure that cannot be disregarded.

Special variants of the issue of the dimensionality of
between-person differences concern the extent to which
some outcome of interest (e.g., education, disease, and
cognition) relates to individual differences in white mat-
ter integrity that are specific or general. For example,
Penke et al. [2010] examined whether cognitive perform-
ance relates to general or regionally specific individual
differences in white matter microstructure. They found
that the common variance in white matter microstructure
across several regions was a significant predictor of
performance.

Here, we investigate the dimensionality of age-related
differences in white matter integrity. Previous studies
have observed pronounced age-related differences in sev-
eral markers of white matter integrity [Barrick et al., 2010;
Burzynska et al., 2010; Madden et al., 2009; O’Sullivan
et al., 2001; Raz et al., in press; Schmidt et al., 1993; Sulli-
van and Pfefferbaum, 2006; Vernooij et al., 2008; Westlye
et al., 2010]. Addressing the dimensionality of such age
differences is challenging because chronological age is a
special outcome variable. That is, mean cross-sectional age
trends of a variable is a fallible proxy of individual differ-
ences in change that play out over time [Hofer and
Sliwinski, 2001; Lindenberger et al., 2011]. We therefore
took the route of investigating whether correlations
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among between-person differences in the tract factors
increase as a function of age.

The rationale and assumptions behind this approach
have been outlined in detail by Hofer et al. [Hofer and Sli-
winski, 2001; Hofer et al., 2006; see also Hertzog, 1985;
Van Petten, 2004]. Briefly, the reasoning goes as follows:
The rank ordering of individuals on a given score (e.g.,
mean FA of a given tract) at a particular age (e.g., age 70)
can be considered to be determined by individual differen-
ces at some initial age (e.g., at age 30) plus any individual
differences in change up to the particular age (i.e., from
age 30 to 70). Under the assumption that between-person
differences in the aging of white matter integrity are
indeed present, the rank ordering of individuals’ white
matter integrity should thus be more strongly determined
by aging-related changes in samples of older adults than
in samples of younger adults. In other words, the older an
individiual, the more has aging had time to influence the
individual’s brain integrity. Therefore, the older a sample,
the more do the covariances across variables reflect aging-
related influences and the less do they reflect initial indi-
vidual differences. Accordingly, if individual differences
in rates of aging of different tracts are associated, then the

correlations among between-person differences in the in-
tegrity of different tracts should increase as a function of
age.

MATERIALS AND METHODS

Participants

Participants (n ¼ 260; rangeage ¼ 60–87 years; Mage ¼
71.8 years; SDage ¼ 9.0 years) were recruited from a larger
population-based epidemiological study, the Swedish
National study of Aging and Care in Kungsholmen
(SNAC-K). Of those contacted for taking part in this study,
75% participated. This resulted in a sample of 3,363 elderly
individuals. The SNAC-K sample was stratified on age
(60, 66, 72, 78, 81, 84, 87, 90, 93, 96, and 99þ years) at base-
line. Information on past events and present medical, psy-
chological, and social status were assessed through
interviews and clinical examinations. The first data collec-
tion was completed in June 2004, and follow-up data col-
lection is ongoing. During the first data collection, a
subsample of noninstitutionalized and nondisabled partici-
pants who were eligible for magnetic resonance imaging

Figure 1.

Graphical representations of estimated structural equation mod-

els of between-person differences in white matter microstruc-

ture. A: A model postulating specific, but related, tract factors.

Latent factors are depicted with circles, observed variables with

rectangles, regressions with one-headed arrows, and covariances

with two-headed arrows. CCG, cingulum cingulate gyrus; CHC,

cingulum hippocampus; CS, corticospinal tract; FMAJ, forceps

major; FMIN, forceps minor; IFOF, inferior fronto-occipital fasci-

culus; SLF, superior longitudinal fasciculus; L, left; R, right; e,

error. B: An alternative model postulating a general factor of

white matter microstructure.
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(MRI) was randomly selected to undergo MRI. The effec-
tive sample used in this study included participants with
acceptable quality of the diffusion-tensor images. Partici-
pants with dementia diagnoses, schizophrenia diagnosis,
bipolar disorder diagnosis, self-reported stroke, stroke
observed on the MR images, self-reported Parkinson’s dis-
ease, or self-reported epilepsy were excluded. Because
very few participants were older than 87 years, we
excluded these subjects to have more homogenous age
groups in the multiple group analyses, which included
age groups of 60–72 (n ¼ 151; meanage ¼ 65.1; SDage ¼ 4.9)
and 78–87 (n ¼ 109; meanage ¼ 81.1; SDage ¼ 3.1) years. Ta-
ble I reports mean age, years of education, vocabulary
[Dureman, 1960], and mini-mental state examination [Fol-
stein et al., 1975] as a function of age group. Potential se-
lectivity of the effective sample for DTI analyses in
relation to the total population-based nondemented sam-
ple in SNAC-K was computed on these background varia-
bles. Selectivity was expressed in an effect-size metric
[(Meffective � Mtotal)/SDTotal] separately for the age groups
of 60–72 and 78–87 years. Selectivity, due to all sources of
nonparticipation in the DTI sample, was negligible (�0.11
to 0.21 SD; median ¼ 0.11 SD).

MRI Acquisition

All MRI measurements were conducted using a 1.5 T
scanner (Philips Intera, The Netherlands). DTI data were
acquired using a single-shot diffusion-weighted echopla-
nar imaging sequence with the following parameters: FOV
¼ 230 � 138 mm2; 128 � 77 matrix; TE ¼ 104 ms; TR ¼
6,838 ms; slice thickness ¼ 5 mm with 1 mm gap; b-value
600 s/mm2. For all participants, a DTI scheme with six
noncollinear diffusion-weighting gradient directions was
used to determine the diffusion tensor set.

Preprocessing and Preliminary Analyses

The DTI data from each subject were analyzed using an
iterative optimization algorithm that takes into considera-
tion the following three models: (1) eddy current artifacts
correction by estimating the whole brain based on shearing,
scaling, and translation effects; (2) motion artifact correction
based on 3D rigid-body motions; and (3) second-order self-
diffusion tensor elements calculation based on the Stejskal-
Tanner equation. After the diffusion tensor calculation, MD
and FA were derived on voxel-by-voxel basis using the fol-
lowing steps: (1) estimation of eigenvalues and eigenvectors
of the diffusion tensor using the single-value decomposition
algorithm; (2) calculation of MD as the mean of the diago-
nal elements; and (3) calculation of FA according to its defi-
nition [Basser and Pierpaoli, 1996].

The FA data was further processed using tract-based
spatial statistics [TBSS; Smith et al., 2006], which is part of
FSL [Smith et al., 2004]. Briefly, the images were aligned
into a common space, using nonlinear registration [Ander-
sson et al., 2007a,b] to the FMRIB58_FA standard-space
image. The mean FA image was then thinned to create a
mean FA skeleton, which represents the centerlines of all
tracts common to the sample. We thresholded and binar-
ized the mean skeleton at FA > 0.2 to reduce the likeli-
hood of partial voluming. This resulted in a final skeleton
mask that included 103,847 voxels. Each participant’s
aligned FA data were then projected onto this skeleton,
which results in individual skeleton images. The MD
images were processed based on the results of the process-
ing of the FA images, yielding individual MD skeletons
sampled from voxels with FA > 0.2.

Voxel-wise DTI analyses of these skeleton images were
performed using permutation-based inference [Nichols
and Holmes, 2002] as implemented in the FSL-tool ‘‘ran-
domize.’’ We tested for linear and quadratic relations to
age for FA and MD. Five thousand permutations were

TABLE I. Participant characteristics

Age group (years) n (M/W)

Education Vocabulary MMSE

M SD M SD M SD

60 63 (26/37) 14.1 3.2 25.3 3.2 29.5 0.5
66 48 (16/32) 12.9 3.8 24.7 3.3 29.3 1.0
72 40 (15/25) 11.2 3.4 23.8 3.8 29.1 1.0
78 44 (14/30) 11.7 4.2 22.5 4.9 29.0 1.1
81 31 (11/20) 11.0 4.9 22.4 4.8 28.8 0.9
84 22 (6/16) 11.1 3.2 23.5 4.3 28.9 0.8
87 12 (5/7) 10.2 3.0 20.0 5.2 28.0 1.8
60–72 151 (57/94) 13.0 3.6 24.7 3.4 29.3 0.9
78–87 109 (36/73) 11.2 4.1 22.4 4.8 28.8 1.1
Total 260 (93/167) 12.2 3.9 23.7 4.2 29.1 1.0

Note: Education, years of education; vocabulary, A 30-item, multiple-choice synonym test [Dureman, 1960]; MMSE, mini-mental state
examination [Folstein et al., 1975]; M, men; W, women.
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performed for each contrast. The threshold for statistical
significance was P < 0.001, corrected for multiple compari-
sons across space and using threshold-free cluster
enhancement [Smith and Nichols, 2009].

To prepare the data for SEM, we produced masks of
seven tracts of interest (Fig. 2) in each hemisphere. These
14 masks (7 tracts � 2 hemispheres) were used to extract
mean FA and MD data from each individual’s skeleton
image. Specifically, we initially selected probabilistic tem-
plate masks for the seven tracts of interest: the cingulate
gyrus part of cingulum (CCG), the portion of cingulum
that extends to the hippocampus (CHC), the corticospinal
tract (CS), the forceps major (FMAJ), the forceps minor
(FMIN), the inferior fronto-occipital fasciculus (IFOF), and
the superior longitudinal fasciculus (SLF). The CS mask
emanated from the Catani tractography atlas [Catani and
Thiebaut de Schotten, 2008; Thiebaut de Schotten et al.,
2011], and the remaining masks were based on the JHU
white-matter tractography atlas [Hua et al., 2008; Wakana
et al., 2004]. The callosal tracts, which were not already
separated across hemispheres, were split into separate
masks for each hemisphere. Next, we visually inspected

the fit of each mask to the skeleton mask and thresholded
each mask individually to optimize fit. Note that the skele-
ton mask is identical for all subjects, so that this procedure
does not introduce any source of between-subject error,
but rather increases the anatomical validity of the mask.
The resulting binary masks were then combined with the
skeleton mask. Further work was focused on ensuring that
there were clear separations between the masks: To avoid
overlap with the callosal tracts, the CCG was combined
with an exclusive corpus callosum mask. The IFOF was
defined as the part not included in FMAJ or FMIN, and
posterior to MNI y ¼ 24. SLF was defined as the part not
overlapping with IFOF. After these steps, all masks were
inspected together to ensure that there were no overlap
among them. Finally, the masks were used to extract the
mean FA and MD data from the individual skeletons.

Table II reports the descriptive statistics of the resulting
14 FA and 14 MD variables. All variables displayed ac-
ceptable skewness and kurtosis [Kline, 1998]. The size of
the masks was generally similar across hemispheres, and
so were the mean FA and MD values. Preliminary analy-
ses showed that Pearson correlations between the same

Figure 2.

Regions of interests in the TBSS skeleton from which mean frac-

tional anisotropy and mean diffusivity were extracted for each

individual. The regions of interest were based on modified (see

‘‘Methods’’ section, for details) probabilistic template masks ema-

nating from the Catani tractography atlas [Catani and Thiebaut

de Schotten, 2008; Thiebaut de Schotten et al., 2011] and the

JHU white-matter tractography atlas [Hua et al., 2008; Wakana

et al., 2004]. A: Red, cingulum cingulate gyrus; blue, cingulum

hippocampus; green, corticospinal tract; violet, forceps major.

B: Red, forceps minor; blue, inferior fronto-occipital fasciculus;

green, superior longitudinal fasciculus. The backdrop image is

the MNI ICBM template.
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tract across hemispheres were generally significant and
high, and higher than correlations between different tracts,
supporting the reliability and validity of these variables.

SEM Analyses

We first estimated the measurement model (Fig. 1A),
specifying tract-factors that represent individual differen-
ces common across the hemispheres for a given tract. One
model was estimated for FA and one for MD. To stand-
ardize the tract factors, one unstandardized loading on
each factor was fixed to 1. We estimated the model as a
multiple group model, with one age group of 60–72 years
and one age group of 78–87 years. We included chronolog-
ical age as a predictor of the tract factors to covary out the
effect that age heterogeneity within age groups may have
on variances and covariances. Measurement equivalence of
this model over age groups was then investigated by com-
paring it to a nested model that assumes the unstandar-
dized loadings on the tract factors to be equal across
groups. A nonsignificant difference in fit between these
models indicates that the loadings are equivalent across
age groups, which is an important methodological prereq-
uisite for using the same model for different age groups
[Meredith, 1993]. Finally, we inspected the correlations
among the tract factors as a function of age group and
examined the confidence intervals around the correlations
to detect potential age-group differences (to arrive at 95%
confidence intervals around the correlations, we used
bootstrapping, 500 iterations, bias-corrected percentile
method).

Next, we fitted the alternative model positing that
between-person differences generalize across the tracts of
interest (Fig. 1B) as a multiple group model and inspected

the fit of this model. Chronological age was included as a
predictor of the general factor. Note that this model and
the tract-based model depicted in Figure 1A are not
nested, and therefore cannot be directly compared in a
straightforward manner. Rather, whether the two models
provide acceptable representations of the data are eval-
uated separately for each model using fit indices that take
model complexity into account.

Finally, we collapsed the multiple groups and estimated
a model positing specific tract factors (Fig. 1A) to the data
from the total sample. Chronological age was included in
this model and was allowed to covary with the tract fac-
tors. In this way, we can estimate age-related differences
in each of the tract factors by inspecting the bivariate cor-
relation between chronological age and a tract factor.

To estimate these models, we used AMOS (IBM SPSS
19) and maximum likelihood estimation. Model fit was
evaluated with the comparative fit index (CFI) and the
root-mean-square error of approximation (RMSEA). A CFI
above 0.95 and an RMSEA below 0.08 was regarded as
indicating acceptably fitting models [e.g., Kline, 1998]. The
difference in chi-square fit statistics was used to compare
nested models. The threshold for statistical significance
was P < 0.05.

RESULTS

The measurement model (Fig. 1A) estimated as a two-
group model (62–72 and 78–87 years) of the FA data
showed a good fit, v2 (126, N ¼ 260) ¼ 131.28, CFI ¼
0.998, RMSEA ¼ 0.013. Fixing the unstandardized loadings
on the tract factors to be equal across age groups did not
significantly reduce the fit, v2 (133, N ¼ 260) ¼ 138.52, CFI
¼ 0.998, RMSEA ¼ 0.013; Dv2 (7) ¼ 7.24, P > 0.404. The

TABLE II. Descriptive statistics of the tracts in the total sample

Tract nvoxels

FA MD

M SD Skew Kurt M SD Skew Kurt

CCG_L 732 0.42 0.03 0.03 �0.30 0.83 0.05 0.47 0.23
CCG_R 661 0.39 0.03 0.20 �0.32 0.82 0.05 0.45 0.07
CHC_L 849 0.39 0.03 0.11 �0.16 1.00 0.09 0.38 �0.13
CHC_R 823 0.40 0.03 0.37 �0.07 1.01 0.11 0.45 �0.12
CS_L 4,599 0.56 0.02 �0.06 �0.13 0.75 0.03 0.88 0.80
CS_R 4,517 0.56 0.02 0.07 �0.36 0.76 0.03 0.85 0.95
FMAJ_L 1,085 0.59 0.03 �0.39 �0.06 0.78 0.06 1.16 1.82
FMAJ_R 1,277 0.56 0.03 �0.27 �0.34 0.79 0.06 1.11 1.70
FMIN_L 2,117 0.51 0.03 �0.27 �0.18 0.81 0.06 0.63 0.38
FMIN_R 1,995 0.52 0.04 �0.22 �0.30 0.83 0.06 0.55 0.33
IFOF_L 3,794 0.47 0.03 �0.14 �0.35 0.85 0.05 0.81 0.55
IFOF_R 3,851 0.46 0.02 �0.27 �0.14 0.84 0.05 0.90 1.13
SLF_L 3,462 0.41 0.02 �0.25 �0.26 0.78 0.05 0.85 0.88
SLF_R 2,789 0.42 0.03 �0.12 �0.29 0.77 0.04 1.09 1.94

Note: CCG, cingulum cingulate gyrus; CHC, cingulum hippocampus; CS, corticospinal tract; FMAJ, forceps major; FMIN, forceps minor;
IFOF, inferior fronto-occipital fasciculus; SLF, superior longitudinal fasciculus; L, left; R, right.
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same model for MD also showed an acceptable fit, v2 (126,
N ¼ 260) ¼ 277.49, CFI ¼ 0.953, RMSEA ¼ 0.068, and a
model with the unstandardized loadings on the tract fac-
tors estimated to be equal across age groups again did not
worsen the fit, v2 (133, N ¼ 260) ¼ 284.28, CFI ¼ 0.953,
RMSEA ¼ 0.066; Dv2 (7) ¼ 6.79, P > 0.451. Thus, the
model is an acceptable representation of both the FA and
MD data, and metric measurement invariance across age
is an acceptable assumption.

With these preconditions fulfilled, we inspected the cor-
relations among the tract factors (Tables III and IV). These
correlations were mostly significant in both age groups for
both FA and MD, indicating shared individual differences
in white matter microstructure among the tracts. However,
the correlations were generally lower than the significant
and high loadings of the observed measures on the tract
factors (Table V). This pattern is in line with the acceptable
fit of this model and indicates convergent and discrimi-
nant validity of the tract factors. In other words, an organi-
zation of individual differences in the observed measures
into tracts is a valid representation of the data. The magni-
tude of the correlations was not generally higher in the
older group, neither for FA nor for MD (see Fig. 3). How-
ever, a few individual correlations displayed significant
age-group differences (Tables III and IV). For FA, the cor-
relations between CCG and FMIN and between CCG and
IFOF were higher in the group of 78–87 than in the age
group of 62–72 years. For MD, the correlation between
FMAJ and FMIN was lower in the group of 78–87 than in
the age group of 62–72 years.

An alternative to the model organizing the individual
differences at the tract level is a model that postulates
only a general factor (Fig. 1B), which extracts the common
variance across the 14 variables. We estimated such a gen-
eral-factor model as a multiple group model (62–72 and
78–87 years), with loadings constrained across age groups.

The general factor accounted for a significant proportion
of the variance in all observed measures (Table V), indicat-
ing the presence of such a general factor in the data. How-
ever, this model was clearly an inadequate representation
of the data, v2 (193, N ¼ 260) ¼ 983.60, CFI ¼ 0.750,
RMSEA ¼ 0.126 for FA and v2 (193, N ¼ 260) ¼ 1006.63,
CFI ¼ 0.747, RMSEA ¼ 0.128 for MD. This model appa-
rently fails to represent important between-subject varian-
ces and covariances at the tract level.

Finally, to report age-related mean trends in the white
matter microstructure of the tracts, we collapsed the multi-
ple group model and estimated the model positing specific
tract factors (Fig. 1A) to the data from the total sample
while allowing chronological age to covary with the tract
factors. Table VI reports the estimates of age-related mean
differences (i.e., correlations between age and the tract fac-
tors) in white matter microstructure. As expected, these
trends were substantial for both FA (r ¼ �0.35 to �0.59)
and MD (r ¼ 0.57–0.69). Widespread significant age-related
decreases in FA and increases in MD were also detected in
voxelwise analyses (Fig. 4). No voxels displayed significant
additional nonlinear age relations. No significant increases
in FA or decreases in MD were observed.

DISCUSSION

Results showed good fit of a model positing that individ-
ual differences in white matter microstructure among older
adults are organized according to tracts. Correlations
between tracts were generally sizable, but lower than the
loadings of the left and right hemisphere measures on the
tract factors, supporting the validity of the tract factors. A
model postulating a general factor, which extracts the var-
iance shared among the observed tracts in the left and right
hemisphere, is clearly an insufficient representation of the
individual differences in white matter microstructure in

TABLE IV. Correlations among tract factors for mean

diffusivity in the age group of 62–72 years (below the

diagonal) and the age group of 78–87 years (above the

diagonal)

Factor CCG CHC CS FMAJ FMIN IFOF SLF

CCG — 0.37* 0.51* 0.46* 0.76* 0.56* 0.66*
CHC 0.45* — 0.41* 0.71* 0.44* 0.61* 0.33*
CS 0.54* 0.29* — 0.65* 0.66* 0.79* 0.82*
FMAJ 0.60* 0.75* 0.61* — 0.62* 0.93* 0.68*
FMIN 0.68* 0.42* 0.62* 0.75* — 0.76* 0.75*
IFOF 0.69* 0.55* 0.75* 0.91* 0.79* — 0.87*
SLF 0.74* 0.30* 0.80* 0.66* 0.77* 0.89* —

Note: CCG, cingulum cingulate gyrus; CHC, cingulum hippocam-
pus; CS, corticospinal tract; FMAJ, forceps major; FMIN, forceps
minor; IFOF, inferior fronto-occipital fasciculus; SLF, superior lon-
gitudinal fasciculus.
*Significant correlation at P < 0.05. Bold typeface indicates signifi-
cant age-group differences for a correlation.

TABLE III. Correlations among tract factors for

fractional anisotropy in the age group of 62–72 years

(below the diagonal) and the age group of 78–87 years

(above the diagonal)

Factor CCG CHC CS FMAJ FMIN IFOF SLF

CCG — 0.34 0.73* 0.74* 0.93* 0.78* 0.85*
CHC 0.57* — 0.41* 0.12 0.30 0.50* 0.53*
CS 0.67* 0.33* — 0.45* 0.67* 0.61* 0.81*
FMAJ 0.72* 0.36* 0.58* — 0.67* 0.65* 0.51*
FMIN 0.73* 0.37* 0.67* 0.64* — 0.76* 0.77*
IFOF 0.66* 0.48* 0.61* 0.67* 0.73* — 0.75*
SLF 0.80* 0.49* 0.80* 0.69* 0.72* 0.80* —

Note: CCG, cingulum cingulate gyrus; CHC, cingulum hippocam-
pus; CS, corticospinal tract; FMAJ, forceps major; FMIN, forceps
minor; IFOF, inferior fronto-occipital fasciculus; SLF, superior lon-
gitudinal fasciculus.
*Significant correlation at P < 0.05. Bold typeface indicates signifi-
cant age-group differences for a correlation.
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this sample of older adults. However, the general factor
accounted for a significant portion of the variance in all of
the observed measures [see also Penke et al., 2010], indicat-
ing the presence of generalizable portions of individual
differences. White matter microstructure displayed pro-
nounced age-related differences in old age. However, the
correlations among the tract factors did generally not
increase as a function of age group. This finding provides
no support for the notion that individual differences in

aging of white matter microstructure play out in a similar
manner across the investigated tracts.

Between-person differences in white matter microstruc-
ture were strongly associated across the left and right
hemisphere of a specific tract, and in part structured dif-
ferently for distinct tracts. These findings suggest that the
diverse genetic and environmental effects that operate
over the life course partly impact individual differences in
white matter microstructure differently for distinct tracts,
and more similarly for the same tract across hemispheres

Figure 3.

Box plot (interquartile range, 95% confidence intervals) of the

21 correlations (Fischer z-transformed) between the tract fac-

tors (see Fig. 1A) for fractional anisotropy (FA) and mean diffu-

sivity (MD) as a function of age group (60–72 vs. 78–87 years).

TABLE VI. Age-related differences in white matter

microstructure for the total sample: Correlations

between chronological age and the tract factors

Tract

r with chronological age

Fractional anisotropy Mean diffusivity

CCG �0.57 0.68
CHC �0.54 0.69
CS �0.38 0.62
FMAJ �0.49 0.64
FMIN �0.59 0.63
IFOF �0.55 0.63
SLF �0.35 0.57

Note: CCG, cingulum cingulate gyrus; CHC, cingulum hippocam-
pus; CS, corticospinal tract; FMAJ, forceps major; FMIN, forceps
minor; IFOF, inferior fronto-occipital fasciculus; SLF, superior lon-
gitudinal fasciculus. All correlations were significant at P < 0.05.

TABLE V. Standardized loadings on the tract factors in the models of fractional anisotropy (FA) and mean

diffusivity (MD) across age groups

Model tract-factors (Fig. 1A) Model general (Fig. 1B)

FA MD FA MD

Factor Indicator 60–72 years 78–87 years 60–72 years 78–87 years 60–72 years 78–87 years 60–72 years 78–87 years

CCG Left 0.85 0.86 0.84 0.83 0.76 0.85 0.62 0.62
Right 0.92 0.88 0.86 0.81 0.80 0.86 0.69 0.70

CHC Left 0.67 0.57 0.65 0.69 0.33 0.32 0.32 0.42
Right 0.72 0.68 0.81 0.80 0.36 0.40 0.44 0.50

CS Left 0.96 0.94 0.94 0.96 0.76 0.77 0.81 0.79
Right 0.95 0.93 0.87 0.92 0.77 0.77 0.77 0.77

FMAJ Left 0.91 0.90 0.82 0.82 0.73 0.65 0.74 0.67
Right 0.85 0.88 0.82 0.89 0.68 0.64 0.72 0.70

FMIN Left 0.92 0.95 0.92 0.90 0.83 0.84 0.80 0.80
Right 0.91 0.95 0.95 0.91 0.81 0.85 0.81 0.79

IFOF Left 0.91 0.90 0.88 0.88 0.78 0.77 0.85 0.82
Right 0.97 0.90 0.89 0.90 0.84 0.80 0.87 0.87

SLF Left 0.94 0.92 0.98 0.94 0.88 0.82 0.92 0.87
Right 0.92 0.88 0.92 0.89 0.85 0.80 0.86 0.81

Note: CCG, cingulum cingulate gyrus; CHC, cingulum hippocampus; CS, corticospinal tract; FMAJ, forceps major; FMIN, forceps minor;
IFOF, inferior fronto-occipital fasciculus; SLF, superior longitudinal fasciculus. All loadings were significant at P < 0.05. The standar-
dized loadings, which are interpreted as correlations, may differ somewhat between age groups although the unstandardized loadings
were fixed over age group.
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than for distinct tracts within and between hemispheres.
This finding is in line with recent results from data-driven
analytical techniques used to explore correlations among
white matter microstructure in different tracts [Wahl et al.,
2010] and across individual voxels [Li et al., in press]. For
example, Wahl et al. [2010] observed generally stronger
correlations between mean FA of homologous pairs of
tracts than between nonhomologous pairs. Our findings
are also in line with reports of varying heritability esti-
mates of white matter microstructure across tracts [Chiang
et al., 2009; Kochunov et al., 2010]. This study extends
these findings by demonstrating acceptable fit of a model
postulating that individual differences in white matter
microstructure in old age are organized at the tract level.
This provides formal support for the convergent and dis-
criminant validity of the tract factors, and thus for the or-
ganization of white matter microstructure at the tract
level. This finding is predictable from known anatomical
and functional principles [e.g., Catani and Ffytche, 2005;
Filley, 2010]. Homologous tracts obviously share localiza-
tion between the left and the right hemisphere. Different
white matter tracts also interconnect distinct functional
systems [e.g., Damoiseaux and Greicius, 2009]. Homolo-
gous tracts are to a varying degree sharing functions
between hemispheres, and different tracts do not share
function to the same extent. Genetic and environmental
effects on white matter microstructure should therefore
play out in a similar manner for homologous tracts [Li
et al., in press; Wahl et al., 2010].

The finding that the tract concept is a valid organiza-
tional principle for white matter microstructure is nontri-

vial, especially when dealing with individual differences
among older adults. It is easy to imagine that age-related
differences in white matter integrity are stochastically
hemisphere-specific, caused by effects that are of regional
and hemisphere-specific, rather than tract-specific, nature
(e.g., microbleeds). If such effects are pronounced in aging,
one should expect an organization according to tracts to
be a weaker model of individual differences in white mat-
ter microstructure in more advanced stages of old age. We
found no evidence of such a pattern, as indicated by the
equivalence of the left and right hemisphere loadings on
the tract factors across the age groups of 60–72 and 78–87
years.

With few exceptions, correlations among tract factors
were significant, indicating shared individual differences
among tracts in this sample of older adults. However, a
general factor alone was clearly insufficient for capturing
the dimensionality of individual differences in white mat-
ter microstructure. This suggests that a substantial amount
of environmental and genetic effects impact white matter
microstructure at the level of tracts and that these effects
are to a varying degree shared between pairs and groups
of tracts. The heterogeneity of the correlations between
tracts (ranging from 0.12 to 0.93) supports this notion [see
also Wahl et al., 2010]. Different tracts may to varying
extent share factors such as regional localization and
genetic determinants. Different individuals also invest dif-
ferent amounts of time and effort into distinct functions
during the life course. Shared involvement of different
tracts in functions, such as language and sensorimotor
skills, may produce shared individual differences in white

Figure 4.

Linear influences of chronological age on FA (upper row) and

MD (bottom row) in the TBSS skeleton superimposed on trans-

verse slices of a template T1 image (MNI 152). Red areas indi-

cate significant voxels (P < 0.001, corrected for multiple

comparisons across space and with threshold-free cluster

enhancement). Green voxels are the nonsignificant remains of

the skeleton. No voxels displaying significant additional nonlinear

age relations were detected. Age was always associated with

decreases of FA and increases of MD.
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matter microstructure of tracts involved in such functions
through experience-dependent plasticity in childhood
[Bengtsson et al., 2005], younger adulthood [Scholz et al.,
2009], and older adulthood [Lövden et al., 2010]. That
said, it is important to note that a general factor accounted
for a significant portion of the variance in the observed
measures. This finding is in line with previous findings
[Penke et al., 2010] and indicates the additional presence
of effects on white matter integrity that influence the brain
globally.

Thus, an important message from this study is that indi-
vidual differences in white matter microstructure are mul-
tidimensional and organized according to multiple
principles, such as tract-specific, common effects across
pairs or groups of tracts, and brain-general effects. Any
given observed measure contains a varying amount of all
these influences. Although we think that this empirical
message matches the mental model of most researchers,
the point has important implications that need to be ex-
plicitly considered. For example, it is common to study
whether between-person differences in the integrity of a
selected brain region are related to outcomes such as func-
tional brain activity or cognitive performance. If such cor-
relations reach significance, then interpretations tend to
focus on the functional relevance of the specific brain
region. Without statistical control of the presence of shared
variance across white matter regions, which sometimes,
but not always, is applied in the literature, such accounts
run the risk of misinterpreting an association that is driven
by shared individual differences across regions, some of
which may generalize across the entire brain. This prob-
lem is likely to be present also in investigations of gray
matter integrity and volume [Salthouse, 2011; Wu et al., in
press]. On the other hand, investigations of whole brain
indices of white matter microstructure fail to represent the
existing tract-specific individual differences as well as
individual differences that are shared between pairs and
groups of tracts. That is, specific relations between individ-
ual tracts or regions and the outcome of interest are often
not investigated. Further, when specific tracts are investi-
gated in addition to global measures [e.g., Penke et al.,
2010], researchers should be aware that specific measures
are likely to suffer from lower reliabilities than more
global measures, which benefit from aggregation or factor-
analytic extraction techniques. Such reliability differences
will bias the results against finding associations with the
more specific measure. Regardless of the outcome of inter-
est (e.g., age, sex, education, cognition, and disease), it is
important to empirically resolve these interpretational
ambiguities stemming from the presence of both general
and specific individual differences in measures of white
matter microstructure.

Here, we investigated the evidence in favor of the
notion that aging has general influences on the integrity of
distinct white matter tracts. The mean age trends were
quite consistent with previous findings [Madden et al.,
2009; Sullivan et al., 2006]: Age differences in FA and MD

were pronounced in the examined tracts and in the voxel-
wise analyses. For FA, the FMIN showed the strongest
association with age, and the association with age tended
to be weaker for FMAJ, consistent with past reports of
larger age differences in FA of the genu than the splenium
[Sullivan et al., 2006]. Age associations for MD tended to
be somewhat higher and somewhat more uniform (r ¼
0.57–0.69) than those for FA (r ¼ �0.35 to �0.59). The
novel findings on the dimensionality of age differences are
to be found in the pattern of correlations among the tract
factors as a function of age. Interestingly, the correlation
between MD in the FMAJ and the FMIN was lower in the
group of 78–87 than in the age group of 62–72 years, indi-
cating that aging affects the rank ordering of individuals
differently for these two regions. This finding suggests
that different mechanism may cause age-related decline in
these two tracts. Such findings go unnoticed if one
inspects mean age trends, which were very similar for MD
in the FMAJ and the FMIN. Two correlations (CCG with
FMIN and IFOF, respectively) for FA were higher in the
older age group. These findings suggest that individual
differences in aging of FA in these tracts are associated.
That is, assuming that individual differences in aging are
present, rank ordering of individuals’ white matter integ-
rity should be more strongly determined by aging-related
influences with increasing age. Thus, the correlations
among between-person differences in integrity of different
tracts should increase as a function of age if individual dif-
ferences in aging of different tracts are associated [see also
Hertzog, 1985; Hofer and Sliwinski, 2001; Hofer et al.,
2006; Van Petten, 2004]. Nevertheless, a general age-related
increase of the correlations among the tracts was not
found. Thus, the general pattern of results provided no
support for the notion that aging is a process with homog-
enous effects on white matter microstructure across the
brain. Note, however, that this conclusion is based on the
assumption of between-person differences in aging of
white matter microstructure and on the typical assump-
tions of cross-sectional research, such as the absence of
cohort effects and age-differential selection effects [Hofer
and Sliwinski, 2001; Hofer et al., 2006]. Thus, longitudinal
work is needed for addressing the dimensionality of white
matter changes in aging more directly [Lindenberger et al.,
2011].

Some limitations and assumptions of the present work
should be noted. First, we note that between-person differ-
ences in white matter microstructure may be organized
according to several principles (e.g., general, tract-based,
functional, regional, and hemisphere-specific), some of
which could not be directly modeled with the present
approach (e.g., hemisphere-specific and regional). Future
studies should address the importance of such factors. In
this vein, we also note that our way of extracting mean
measures of white matter microstructure with atlas-based
templates assumes homogeneity of individual differences
across the voxels within the anatomically defined tracts.
Data-driven approaches to detect covariation among
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voxels suggest that the strongest FA correlations are found
among voxels in anatomically discernible tracts and tract
segments [Li et al., in press]. These findings partly support
the homogeneity assumption. Nevertheless, due to varia-
tion in the degree of crossing fibers, histological properties
within a tract, and potential individual and age-related
differences in such variability, this assumption may not be
valid across an entire anatomically-defined tract. Data-
driven approaches to define white matter regions with ho-
mogeneity of individual differences [Groves et al., 2011; Li
et al., in press] are promising future avenues for avoiding
this assumption. On the other hand, the good fit of the
model postulating tract factors and the high correlations
within a specific tract across hemispheres indicate high
reliability and validity of the measures, and of the way,
we preprocessed the data and extracted the tracts of inter-
est. Thus, whereas our approach may not capture impor-
tant sub-variability within the tracts, it does capture
systematic variability at the level of tracts, indicating that
this is one important dimension of between-person differ-
ences in white matter microstructure.

Second, we note that the DTI measurements were not of
more modern quality, which is a reflection of the time
point of collecting the data. The quality of the images may
have resulted in suboptimal signal-to-noise ratio and made
it impossible to apply tractography. Although forming
latent variables attenuated the influence of error variance,
the large and anisotropic voxels may have introduced par-
tial volume effects (gray/white mixture) that could not be
completely accounted for by the TBSS processing. This
may have introduced partial volume influences on the
measures of white matter microstructure that may system-
atically vary across age and tracts. Regardless of the qual-
ity of the DTI, future studies may need to take volume
differences into account to arrive at better estimates of age
differences in white matter microstructure [e.g., Bastin
et al., 2010; Vernooij et al., 2008]. That said, the effect of
partial volume averaging across tracts was however mini-
mized in this study by ensuring that there was no voxel
overlap among tracts and by selecting tracts of interest
that were well separated.

Finally, we note that generalization of the present results
is restricted to old age. In addition, the lack of a young
comparison group may limit the conclusion related to the
dimensionality of individual differences in the aging of
white matter microstructure. However, age-related differ-
ences in white matter microstructure were pronounced in
our sample of older adults. Moreover, previous studies
[e.g., Westlye et al., 2010] show that age-related differences
in white matter microstructure accelerate after the age of
60. Thus, this study captures well the period of the adult
lifespan where most of the age-related action in white mat-
ter microstructure occurs. Nevertheless, future studies
should include a lifespan sample to extend the generality
of the current findings. Future studies should also examine
the potentially moderating influences of vascular risk
[Burgmans et al., 2010; Kennedy and Raz, 2009], atrophy

[Bastin et al., 2010; Vernooij et al., 2008], and lesion forma-
tion [Vernooij et al., 2008] on the dimensionality of
between-person differences in white matter
microstructure.

We conclude that individual differences in white matter
microstructure among older adults are organized accord-
ing to multiple principles. For any given measure, several
components of individual differences will be present.
Future research may profit from applying methods suita-
ble for disentangling general and specific influences, such
as those used in intelligence [Carroll, 1993] and cognitive-
aging research [e.g., Hofer and Sliwinski, 2001; Hofer
et al., 2006; Lindenberger and Ghisletta, 2009; Salthouse,
2011]. SEM offers one attractive route, which enables the
formation of latent factors that attenuate the influence of
error and forces the researcher to explicate the measure-
ment model of individual differences. Under optimal sit-
uations, SEM may also be used for simultaneously
extracting general and specific variance components at the
latent level [Schmiedek and Li, 2004]. When SEM is com-
bined with multiple regression approaches, predicted rela-
tions between white matter microstructure and outcomes
of interest can be empirically examined to bolster specific
interpretations of findings. For any given outcome (e.g.,
education, cognition, and disease), it is an empirical issue
whether relations are specific to certain white matter tracts
or rather reflect general influences. Here, we reported the
novel finding that correlations among white matter micro-
structure in distinct tracts do not generally increase from
early to late phases of older adulthood. This finding pro-
vides indirect evidence suggesting that aging of white
matter microstructure is not a process that plays out in a
similar manner across the brain. Longitudinal work is
needed to corroborate these findings.
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