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Abstract
Individuals differ in how they perceive, remember, and think. There is evidence for the existence of distinct subgroups that
differ in cognitive performance within the older population. However, it is less clear how individual differences in cognition in
old age are linked to differences in brain-based measures. We used latent-profile analysis on n-back working-memory (WM)
performance to identify subgroups in a large sample of older adults (n = 181; age = 64–68 years). Our analysis identified one
larger normal subgroup with higher performance (n = 113; 63%), and a second smaller subgroup (n = 55; 31%) with lower
performance. The low-performing subgroup showed weaker load-dependent BOLD modulation and lower connectivity within
the fronto-parietal network (FPN) as well as between FPN and striatum during n-back, along with lower FPN connectivity at
rest. This group also exhibited lower FPN structural integrity, lower frontal dopamine D2 binding potential, inferior
performance on offline WM tests, and a trend-level genetic predisposition for lower dopamine-system efficiency. By contrast,
this group exhibited relatively intact episodic memory and associated brain measures (i.e., hippocampal volume, structural,
and functional connectivity within the default-mode network). Collectively, these data provide converging evidence for the
existence of a group of older adults with impaired WM functioning characterized by reduced cortico-striatal coupling and
aberrant cortico-cortical integrity within FPN.
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Introduction
Cognitive impairment in aging may come in several different
forms (Buckner 2004). One type of impairment is characterized
by atrophy in the medial-temporal lobe (MTL) and posterior cor-
tical regions, which often ensures deficits on long-term memory
tasks (Nyberg and Bäckman 2010; Gorbach et al. 2016) and may
predict Alzheimer’s disease (AD) (Devanand et al. 2007; Kantarci
et al. 2016; Mak et al. 2016). A second type is associated with
larger age-related alterations in the fronto-parietal cortex and
subcortical regions, and is related to impaired performance on
working memory (WM) and various executive tasks (West 1996;
Dahlin et al. 2008; Salami et al. 2013; Di et al. 2014). In addition,
large-scale population-based studies have demonstrated sub-
stantial inter-individual differences in cognitive performance
across the human lifespan (Lindenberger 2014), with a sizable
proportion of older adults showing little to no impairment in
memory or executive functioning (Glisky et al. 2001; Josefsson
et al. 2012; Nyberg et al. 2012). Thus, there is converging evi-
dence from several lines of research for the existence of distinct
cognitive subgroups within the older population.

Despite the fact that WM has been much studied in the con-
text of aging, brain-related factors linked to well-preserved WM
in old age remain insufficiently characterized, likely reflecting a
lack of comprehensive assessment of brain integrity, measured
by different in vivo imaging modalities as well as genetic mea-
sures. Specifically, there is no study to date that simultaneously
integrates neurochemical, structural, functional and genetic
measures to identify brain-related factors of well-preserved WM
functioning in aging. Another issue that has not been addressed
in previous work concerns identification and characterization of
potential WM subgroups. Most previous studies have reported a
linear association between age-related changes in brain and
behavior (Cabeza et al. 2016). However, such associations may
also be non-linear and only detectable in certain subgroups,
when a certain threshold of brain deterioration has been
reached (Burzynska et al. 2012). Therefore, we used latent-
profile analysis (LPA) which is a Gaussian mixture-modeling
approach for identifying hidden population subgroups (Vermunt
and Magidson 2002). Each individual has a probability of belong-
ing to a certain subgroup, which allows for characterizing sub-
groups on other variables without assuming absolute group
membership, thus boosting classification accuracy. LPA has
been shown to capture population heterogeneity by identifying
clinically relevant subgroups in different neurological disorders
such as AD (Scheltens et al. 2016), Parkinson’s disease (Flensborg
Damholdt et al. 2012), but also among normal elderly adults (Ko
et al. 2007; Pruchno et al. 2010; Hayden et al. 2011; Fandako et al.
2012; Lövden et al. 2017), and has the advantage of being purely
data-driven and independent of a pre-determined cut-offs such
as the median. We applied LPA on WM performance data from
in-scanner and a number of offline tests to identify subgroups
in a large age-homogenous sample of older adults (n = 180;
64–68 years). Using this multivariate data-driven approach, we
expected to observe a minimum of two subgroups, likely
reflecting normal versus low-performing older individuals
with regard to WM functioning.

In the next step, the identified subgroups were compared on
a rich set of demographics, health, genetic, and structural and
functional brain imaging variables to explore whether latent
profiling of older adults on a single cognitive task can capture
differences in neurobiological integrity for some of the examined
variables. For this, we first examined group differences in func-
tional brain responses (amplitude and connectivity) within the

canonical fronto-parietal network (FPN), but also within the dor-
sal attention network (DAN) and default mode network (DMN)
during n-back performance, as well as during resting-state.
Individual differences in WM have been linked to individual dif-
ferences in blood-oxygen-level dependent (BOLD) signal respon-
sivity within the DMN (Liang et al. 2016) and the FPN (Nagel
et al. 2009; Spencer-Smith et al. 2013; Darki and Klingberg 2015;
Huang et al. 2016), but not within the DAN (Grady et al. 2016).
Specifically, BOLD signal in the FPN has been shown to be less
responsive to increasing WM demands in low-performing older
subgroups (Nagel et al. 2009; Nyberg et al. 2009). Relatedly, indi-
vidual differences in load-dependent functional connectivity
have been shown to predict individual differences in WM perfor-
mance (Nagel et al. 2011; Newton et al. 2011; Huang et al. 2016).
Moreover, there is evidence for age differences in functional con-
nectivity at rest, including differences in the FPN (Salami et al.
2014; Grady et al. 2016; Jockwitz et al. 2017), suggesting that sub-
groups may also differ in resting-state connectivity.

Next, we examined group differences in structural MRI data,
resting cerebral blood flow, and dopamine (DA)-system integ-
rity. Older individuals with lower WM performance show
reduced global white matter integrity (Vernooij et al. 2009), par-
ticularly within frontal pathways (Davis et al. 2009; Burzynska
et al. 2011), as well as accelerated atrophy in prefrontal (Raz
et al. 1997; Gunning-Dixon and Raz 2003; Yuan and Raz 2014),
but also parietal and subcortical (Manard et al. 2016) regions. In
addition, resting cerebral blood flow in prefrontal regions
increases in response to WM training (Takeuchi et al. 2013).
Therefore, we examined if older individuals with lower WM
performance exhibit lower FP cerebral blood and increased cou-
pling between resting cerebral blood flow and WM.

DA receptor availability decreases with age (Volkow et al.
1996; Rieckmann et al. 2011) and has been linked to age-related
cognitive deficits (Bäckman et al. 2010). However, the role of DA
D2 receptors in WM has not been firmly established (Cools and
D’Esposito 2011), but some studies suggest that D2 receptors are
implicated in striatal-based updating of WM contents (Frank
et al. 2001; Mehta et al. 2004; Bäckman et al. 2011; D’Esposito
and Postle 2015). Relatedly, animal studies show that frontal
DA D2 receptors impact attention and flexibility aspects of WM
(Floresco et al. 2006; Puig and Miller 2015; Ott and Nieder 2016).
Computational models also suggest that DA D2 activity might
put prefrontal networks in a more flexible state and enhance
WM coding (Ott and Nieder 2016). Thus, it is reasonable to
expect that older individuals with lower WM performance and
lower functional and structural brain integrity are also charac-
terized by reduced DA D2 receptor availability, possibly within
the frontal region. Such a finding would not only inform our
understanding of WM in aging but also provide novel evidence
for the role of (prefrontal) D2 receptors in WM. That said, in
order not to limit our investigation to one aspect of the DA sys-
tem, we also take a genomic imaging approach to study the
relationship between the DA and WM.

Between-person variability in WM performance has previously
been linked, in part, to DA gene variants (Barnes et al. 2011;
Nikolova et al. 2011), such as the Catechol-O-Methyltransferase
(COMT) Val158Met polymorphism (Nagel et al. 2008), and allelic
variants have been associated with differences in task-associated
functional brain responses (Nyberg et al. 2013; Papenberg et al.
2015). Single-nucleotide polymorphisms (SNPs) located in the D2-
receptor gene and in proteins relevant to DA-signaling pathways
are other examples of genes associated with WM performance, as
well as with brain structure and function and neurochemistry
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(Hirvonen et al. 2009; Colzato et al. 2016). Given that brain
responses and behavior are controlled by a wide variety of genes
(Li et al. 2013), we compared group differences for the presence of
allelic variants of SNPs that have been associated with differences
in striatal and frontal DA levels.

Finally, we compared groups on selected demographic and
health-related variables, as prior evidence supports a link
between WM functioning and demographic (e.g., education)
and vascular factors (Boone 1999; Plumet et al. 2005).

Materials and Methods
A detailed description of the recruitment procedure, imaging pro-
tocols, and cognitive and life-style assessments in the Cognition,
Brain, and Aging (COBRA) study have been published (Nevalainen
et al. 2015; Nyberg et al. 2016; Lövden et al. 2017). Here, we
describe the methods directly relevant to the present study.

Participants

The sample consisted of 180 older individuals (64–68 years;
mean = 66.2, SD = 1.2; 81 women) randomly selected from the
population register of Umeå, in northern Sweden. Exclusion cri-
teria included suspected brain pathology, impaired cognitive
functioning (Mini Mental State Examination <27), and conditions
that could bias the measurements of brain (e.g., severe trauma,
tumors), cognitive performance (e.g., severely reduced vision) or
preclude imaging (e.g., metal implants). 28% of the sample was
working, 18% used nicotine, and 33% took blood-pressure medi-
cations. Mean education was 13.3 years (SD = 3.5), body-mass
index (BMI) was 26.1 (SD = 3.5), systolic blood pressure was 142
(SD = 17), and diastolic blood pressure was 85 (SD = 10). The
sample is representative of the healthy target population in
Umeå (Nevalainen et al. 2015).

In-scanner Task

Performance data (sum of correct responses) were obtained from
a numerical n-back task. In this task, a sequence of single num-
bers appeared on the screen. Each number was shown for 1.5 s,
with an ISI of 0.5 s. During every item presentation, participants
reported if the number currently seen on the screen was the
same as that shown 1, 2, or 3 digits back. A heading that preceded
each subtest indicated the actual condition. Participants responded
by pressing one of two adjacent buttons with the index or middle
finger to reply “yes, it is the same number” or “no, it is not the
same number”, respectively. A single fMRI run with 9 blocks for
each condition (1-, 2-, and 3-back) was performed in random
order (inter-block interval: 22 s), each block consisting of 10 items
for each subject of which 4 were targets. The trial sequence was
the same for all participants with only two lures (a single 2-back
lure within two of the 3-back blocks). The n-back blocks were
counterbalanced. The mean starting time for the different condi-
tions was 313 s, 306 s, and 296 s, respectively.

Offline Cognitive Measures

The main cognitive domains examined offline in COBRA are WM,
episodic memory, and perceptual speed (Nevalainen et al., 2015).
These domains were tested with 3 separate tasks each (a verbal, a
numerical, and a figural task). For each task, summary scores
were computed across the total number of blocks or trials. Task
summary scores were standardized (T-score: Mean = 50; SD = 10),
to form a composite for each task and averaged across cognitive
domain to generate domain-specific summary scores.

Working Memory

Letter-Updating Task
A sequence of letters (A–D) appeared one-by-one on the com-
puter screen, and participants were instructed to continuously
update and remember the 3 lastly shown letters. Letters were
presented during 1 s, with an ISI of 0.5 s. Then, at an unknown
time point in the sequence, the 3 last letters were to be typed
in using the keyboard. In case of failure, participants guessed.
The test consisted of 16 trials, with 4 trials of 7, 9, 11, or 13 let-
ter sequences presented in random order.

Columnized Numerical 3-Back Task
A grid consisting of 1 × 3 boxes was presented on the screen. In
each box, one at a time and starting from the left, a number (1–9)
was presented for 1.5 s, with the next number presented after an
ISI of 0.5 s. After a number was presented in the rightmost box,
the next number appeared in the leftmost box. In each trial, 30
numbers were presented. The task consisted of deciding whether
the number appearing in a specific box was the same as the last
number displayed in that particular box. A response was required
for all 3 boxes throughout the test, by pressing labeled keys on
the keyboard that corresponded to “yes” (right index finger) or
“no” (left index finger). The first 3 numbers all received a “no”, as
no numbers had appeared before that.

Spatial-Updating Task
Participants were presented with 3 separate grids (3 × 3 squares
in each) that were placed adjacent to each other. Three circular
objects, one at a random position in each grid, were presented
simultaneously for 4 s, after which they disappeared. Following
this, an arrow appeared beneath each grid for 2.5 s (one at a time,
from left to right, with an ISI of 0.5 s), pointing in the direction
where each circle should be mentally moved. This manipulation
was done twice for each grid (i.e., 6 updating operations in total).
Following updating, participants were asked to mark the correct
object position in each grid, using the computer mouse. In case of
uncertainty, participants guessed the position of the object. The
test consisted of 10 test trials.

Perceptual Speed

Letter-Comparison Task
Two 4-letter strings were shown adjacent, but separated, from
each other. The task consisted of deciding whether the pairs of
items, built up by letters a–z, were identical or differed in the
sequence code. For different letter strings, only one letter differed.
During item presentation, participants responded by pressing
designated buttons. When participants had responded, the
sequence disappeared. The same event took place if no response
was given within 5 s (timeout). The ISI between a response or
timeout and appearance of a new item was 0.5 s. Each trial con-
sisted of 40 item pairs, of which half were identical and inter-
mixed with the other half of differing pairs. Scores were
calculated by dividing the number of correct responses by the
total response time (i.e., for both correct and incorrect responses;
in milliseconds) and multiplying this quotient by 60 000 (i.e., cre-
ating a score of correct responses per minute, which penalizes
incorrect responses).

Number-Comparison Task
The design of this task was similar to that of the letter-comparison
task, the only difference being that the items contained 4-number
strings (comprised of numbers 1–9) instead of letters.
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Figure-Comparison Task
The procedures were similar to the other comparison tasks, except
that participants were presented with two figures (“fribbles”; cour-
tesy of Michael J. Tarr, Brown University, Providence, RI, USA,
http://www.tarrlab.org) that were adjacently positioned, with some
space in between, on the display. For the different figures, one con-
stituent of the figures was different.

Episodic Memory

Word Recall
Participants were presented with 16 Swedish words (nouns)
that appeared consecutively on the screen. The words were
concrete, easy to spell, and all differed in the first 3 letters.
During encoding, words were presented for 6 s each, with an ISI
of 1 s. After having seen the entire list of 16 items, participants
reported the words they could recall by writing them one-by-
one in any order. Two test trials were administered (max = 32).

Number-Word Task
This task consisted of memorizing pairs of 2-digit numbers and
concrete plural nouns (e.g., 46 dogs). During encoding, 8 number-
word pairs were displayed for 6 s each, with an ISI of 1 s.
Following encoding, participants were requested to report, using
the keyboard, the 2-digit number that was associated with each
noun shown on the screen. (e.g., How many dogs?) Upon report-
ing, words were presented one-by-one in a different order than
during acquisition. Two test trials were administered.

Object-Position Memory Task
Participants were presented with a grid of 6 × 6 squares. One at a
time, 12 objects were shown, each at separate locations in the
grid. Presentation time of each object-position pair was 8 s, with
an ISI of 1 s. At retrieval, all objects were shown adjacent to the
grid and the correct position of each object was reported by mov-
ing objects with the computer mouse (in any order) to the correct
location in the grid. If failing to recall the position, participants
guessed. Two test trials were performed.

Verbal Knowledge

Participants performed a vocabulary test (Dureman, 1960). Thirty
words were presented and for each target word, a correct syno-
nym out of 5 possible alternatives was to be selected. The maxi-
mum score for this task was 30 (one credit score for each correct
synonym).

Behavioral Profiling
Rather than relying on an arbitrary a-priori cut-off, such as the
median, LPA is a data-driven method that can operate on mul-
tiple indicator variables (1-back, 2-back, and 3-back) to identify
latent WM subgroups in the n-back data by entering summary
scores from each condition as separate variables. For supple-
mentary information, an alternative model was based on sum-
mary scores from the 3 WM offline tests. Overlap between
classifications was computed to estimate to what degree in-
scanner profiling generalizes to offline WM data. Individuals
that were classified as normal performing based on in-scanner
data but were low-performing on offline data, and vice versa,
were excluded from supplementary analysis because of low
confidence in their group allocation. LPA was implemented
with Gaussian-mixture modeling. The Bayesian information
criterion (BIC) and bootstrap likelihood ratio test (LRT) were

used to compare models with the number of classes varying
from 1 to 5. The model with the lowest BIC was selected as the
optimal description of latent classes in the data. The analyses
were implemented in R’s Mclust package (http://cran.r-project.
org/web/packages/mclust/index.html)

In order to characterize the subgroups further in terms of
their behavioral profile, they were compared on offline domain
summary scores with a domain × group ANOVA and follow-up
independent t-tests on domain summary scores and individual
tests. To elucidate possible inter-relations among domain group
differences, a multiple regression analysis was included with
offline WM summary score as the dependent variable and group,
offline summary scores for episodic memory, speed, and SRB as
predictors. An absence of a group effect would indicate that WM
group differences are explained by group differences in any of
the other predictors.

Image Acquisition

Magnetic resonance (MR) imaging was performed with a 3 Tesla
Discovery MR 750 scanner (General Electric, WI, US), equipped
with a 32-channel phased-array head coil. Positron Emission
Tomography (PET) was done with a Discovery PET/CT 690 scan-
ner (General Electric, WI, USA).

Structural MR Imaging
A 3D fast-spoiled echo sequence was used for acquiring anatom-
ical T1-weighted images, collected as 176 slices with a thickness
of 1mm. TR = 8.2ms, flip angle = 12 degrees, and field of view =
25 × 25 cm.

Cerebral Blood Flow
Whole-brain cerebral-blood flow was measured with 3D pseudo-
continuous arterial spin labeling (ASL). Labeling time was 1.5 s,
post-labeling delay time was 1.5 s, field of view was 24 cm, slice
thickness was 4mm, number of averages was 3, number of con-
trol label pairs was 30, and acquisition resolution was 8 × 512
(arms × data points in spiral scheme). Cerebral blood flow (CBF)
maps were computed yielding tissue CBF in mL/min/100 g.

Functional MR Imaging
BOLD-contrast sensitive scans were acquired using a T2*-
weighted single-shot gradient echoplanar-imaging sequence.
Parameters were: 37 transaxial slices, 3.4mm thickness, 0.5mm
spacing, TE/TR = 30/2000ms, 80 degrees flip angle, 25 × 25 cm field
of view, and a 96 × 96 acquisition matrix (Y direction phase encod-
ing). At the start, 10 dummy scans were collected. The functional
data were acquired during resting-state conditions (6min) fol-
lowed by the numerical n-back WM task described above.

Diffusion-Weighted Imaging
White-matter integrity was examined with diffusion-tensor
imaging (DTI). These images were acquired by a spin-echo-
planar T2-weighted sequence, using 3 repetitions and 32
independent directions. The total slice number was 64, with
a TR of 8000ms, a TE of 84.4 ms, a flip angle of 90 degrees, a
field of view of 25 × 25 cm, and with b = 1000 s/mm2 (Y direc-
tion phase encoding). The data matrix was interpolated to a
256 × 256 matrix with an up-sampled spatial resolution of
0.98 × 0.98 × 2mm.
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PET Image Acquisition
PET was performed during resting-state conditions following
an intravenous bolus injection of 250MBq 11C-raclopride.
Preceding the injection, a 5min low-dose helical CT scan
(20mA, 120 kV, 0.8 s/revolution) was obtained, for the purpose
of attenuation correction. Following the bolus injection, a 55-
min 18-frame dynamic scan was acquired. Attenuation- and
decay-corrected images (47 slices, field of view = 25 cm, 256 ×
256-pixel transaxial images, voxel size = 0.977 × 0.977 ×
3.27mm) were reconstructed with filter-back-projection (FBP),
using 6 iterations, 24 subsets, and 3.0mm post filtering, yield-
ing full width at half maximum (FWHM) of 3.2mm (Wallsten
et al. 2013). Head movements during the imaging session were
minimized with an individually fitted thermoplastic mask
attached to the bed surface. From the initial sample (n = 180),
12 subjects misunderstood fMRI n-back task (see subgroup 3 in
the Results section), 6 subjects lacked DA data, 3 were statisti-
cal outliers, and 13 had missing FBP data. Thus, data from 146
subjects (n (normal-performing) = 95; n (low-performing) = 51)
were included in this analysis. For 82% of the individuals, PET
was carried out 2 days after the MR-scan (average time differ-
ence between MRI and PET: 3 ± 6 days).

Image Processing
PET Images

The following preprocessing steps were performed for each
subject in SPM8. The 18 frame PET scans were coregistered to
the T1-image using the time-frame-mean of the PET images as
source. They were then normalized to MNI-space with the
subject-specific flow fields (obtained with DARTEL) and then
were affine transformed, and smoothed via a Gaussian filter of
8mm. Normalization parameters were selected so that concen-
trations in the images were preserved. For determination of
D2DR BP, time–activity curves for each voxel were entered into
a Logan analyses (Logan et al. 1990), using time–activity curves
in the gray-matter parts of cerebellum as reference.

Volumetric MRI Processing

To quantify gray-matter volumes, T1-weighted images were
first segmented into gray matter, white matter, and cerebrospi-
nal fluid, using the unified segmentation approach (Ashburner
and Friston 2005) in SPM [Statistical Parametric Mapping,
Wellcome Trust Centre for Neuroimaging, http://www.fil.ion.
ucl.ac.uk/spm/] implemented in Matlab 10 (The Mathworks,
Inc). The “light clean up” option was used to remove odd voxels
from the segments. The gray-matter images were further ana-
lyzed using DARTEL (Ashburner 2007) in SPM. The gray-matter
segments were imported into DARTEL space, and a final cus-
tomized template was created, as were subject-specific flow
fields containing the individual spatial-normalization para-
meters (diffeomorphic non-linear image registration). These
segments were further warped into standard MNI space, by
incorporating an affine transformation mapped from the
DARTEL template to MNI space. In addition, the normalized
gray-matter volumes were modulated by scaling these with
Jacobian determinants from the registration step to preserve
local-tissue volumes. Volumes were smoothed with an FWHM
Gaussian kernel of 8mm in the 3 directions. Here, we ran a
two-sample t-test to compare gray-matter volume within the
canonical FPN as well as total gray-matter volume between
subgroups.

Diffusion-Weighted Image Processing

Diffusion-weighted data analysis was performed using the
University of Oxford’s Center for Functional Magnetic
Resonance Imaging of the Brain (FMRIB) Software Library (FSL)
package (http://www.fmrib.ox.ac.uk/fsl) and tract-based spa-
tial statistics (TBSS), as part of the FMRIB software package.
The full details of DTI data analyses (using identical imaging
parameters but on a different sample) were given elsewhere
(Salami et al. 2011). In short, the 3 subject-specific diffusion acqui-
sitions were concatenated in time and corrected for eddy correct-
induced distortions and head motion. Accordingly, the b-matrix
was reoriented based on the transformation matrix (Leemans
and Jones 2009). Next, the first volume within the averaged vol-
ume that did not have a gradient applied (i.e., the first b = 0) was
used to generate a binary brain mask with the Brain Extraction
Tool (Smith 2002). Finally, DTIfit was used to fit a diffusion tensor
to each voxel included in the brain mask. As such, voxel-wise
maps of fractional anisotropy (FA) were obtained. Using the TBSS
processing stream, all subject-specific FA maps were nonlinearly
normalized to standard space (FMRIB58_FA) and then fed into a
skeletonize program to make a skeleton of common white-matter
tracts across all subjects. Averaged FA along the spatial course of
11 major tracts (Salami et al. 2011) were computed with reference
to the JHU ICBM-DTI-81 white-matter labels, distributed in the
FSL package (Wakana et al. 2004). There were 2 subjects (one
from each group) with missing DTI data (n (normal-performing) =
112; n (low-performing) = 54).

Functional MRI Analyses

Preprocessing of the fMRI data included slice-timing correction
and motion correction by unwarping and realignment to the first
image of each volume. The realignment routine calculates 3
translation parameters (x, y, and z) and 3 rotation parameters
(roll, pitch, and jaw) reflecting the location of each volume com-
pared to the first volume. The fMRI volumes were normalized to a
sample-specific template, using DARTEL (Ashburner 2007), affine
alignment to MNI standard space, and spatial smoothing with an
8-mm FWHM Gaussian kernel. As a first order analysis, a general
linear model with regressors for each load condition (1-back,
2-back, 3-back), convolved with a hemodynamic response func-
tion, and the 6 realignment parameters from the movement cor-
rection as covariates of no interest, was set up. Each block was
20 s and there were 9 blocks per n-back-condition. Three fixation
periods of 20 s each formed an implicit baseline. A-priori ROI
analyses were chosen for primary analyses in order to avoid
sample-specific bias (e.g., toward the larger group or toward task-
based vs. resting-state BOLD).

ROIs were selected based on existing literature (Vincent et al.
2008) to capture key nodes of 3 large-scale association networks
(Supplementary Table 1): The canonical WM fronto-parietal net-
work (FPN: bilateral anterior and dorsolateral PFC, anterior cingu-
late, bilateral insula, and bilateral anterior inferior parietal lobe),
the default mode network (DMN: ventromedial PFC, posterior cin-
gulate cortex, bilateral posterior inferior parietal lobe, and bilateral
hippocampal formation), and the dorsal attention network (DAN:
bilateral middle temporal area MT+, bilateral frontal eye fields
and bilateral superior parietal lobes). ROIs were defined in stan-
dard MNI space (2 × 2 × 2mm) as spheres with a 6mm diameter,
centered on peak coordinates based on prior research (Vincent
et al. 2008).

Given that coupling of cortical WM areas with striatum is
observed during efficient WM functioning (Satterthwaite et al.
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2012; Quide et al. 2013), in an additional analysis, striatal ROIs
were added to investigate functional connectivity with FPN
ROIs. Striatal ROIs were defined as bilateral caudate and puta-
men in standard space based on the Harvard Oxford Atlas.

For each participant, contrast files for the conditions of
interest (1-back, 2-back, 3-back) were then used to extract indi-
vidual betas (a measure of the BOLD signal’s magnitude) in
each region of interest (ROIs). The mean values across ROIs
belonging to the same network were computed as summary
network scores. Group differences in load-dependent up-regu-
lation were then identified with a 3 (network) × 3 (load) × 2
(Group) ANOVA and followed with individual t-tests between
groups and loads within networks.

To provide supplementary information on load-dependent
changes in BOLD response, a voxel-wise general linear model
(GLM) was set up for each participant to generate subject-
specific contrast (3-back or 2-back vs. 1-back). Subject-specific
contrasts were taken into a second level random-effects model
using multiple regression. Local maxima with P < 0.05 (FDR cor-
rected), and an extent cluster-level threshold of P < 0.05 were
considered significant. Preprocessing and analyses (both for
each subject and for the groups) of the MR data were made
using SPM8. Batching was simplified with an in-house devel-
oped software, DataZ.

Functional connectivity was computed using in-house
MATLAB scripts. Prior to computing functional connectivity
estimates, a temporal bandpass filter (0.008–0.1 Hz) was applied
to the pre-processed task and resting-state runs and the time-
series from a white-matter ROI, a CSF ROI, as well as the
motion parameters were removed from the data. Then, func-
tional connectivity was computed for pairwise correlations
across all ROIs within a network, and, as a network summary
score, we computed mean across all possible pairwise correla-
tions within each network. For the task run, functional connec-
tivity was computed separately for the time points belonging to
each condition (1-back, 2-back, 3-back), taking 4-sec BOLD delay
into account. Load-dependent differences in functional connec-
tivity analyses were explored using load (3) × group ANOVAs
within networks and followed with analyses of individual
nodes within a network.

In addition to the motion correction as part of the prepro-
cessing and the consideration of the 6 motion parameters as
regressors of no interest in the analyses, the root-mean-square
of the 3 translation and 3 rotation parameters was calculated
for each volume relative to the preceding volume and averaged
across all volumes as a summary measure of motion. The sum-
mary measure of head motion will be compared between the
two groups to assure that motion differences may not account
for differences in brain function.

Genetic Analysis
Blood samples were analyzed for presence of SNPs in genes for
the DA D2 receptor (C957T; rs6277), COMT (rs4680), DA- and
cAMP-regulated neuronal phosphoprotein (DARPP-32, PPP1R1B;
rs879606), and the vesicular monoamine transporter 2 (VMAT2,
SLC18A2; rs363387). These SNPs were chosen as they may infer
differences in proteins that regulate striatal and frontal DA
levels, DA signaling, and vesicular DA storage (Lachman et al.
1996; Hirvonen et al. 2004; Schwab et al. 2005; Kunii et al. 2014),
and all have been associated with behavioral differences, includ-
ing WM performance (Meyer-Lindenberg et al. 2007; Diaz-Asper
et al. 2008; Lindenberger et al. 2008; Colzato et al. 2016). Based
on previous research, allelic variants were categorized as

markers of a beneficial (C-allele of C957T, A-allele of COMT,
G-homozygotes for DARPP-32, and G-allele of VMAT2) or less
beneficial (T-homozygotes of C957T, G-homozygotes of COMT,
A-allele carriers of DARPP-32, and T-homozygotes of VMAT2) DA
profile, and scored 1 or 0, respectively. Thus, the summed gene
score ranged between 0 and 4. DNA was extracted for the SNPs
of interest according to standard procedures. DNA amplification
failed for a few reactions, and thus 180 individuals were success-
fully genotyped for the COMT and C957T SNPs, and 179 for the
DARPP-32 and VMAT2 SNPs.

To adjust for multiple comparisons, Bonferroni correction for
6 comparisons for load-dependent BOLD modulation and for
functional connectivity during task as well as 11 comparisons
for white-matter fractional anisotropy was used. Bonferroni cor-
rection for 9 comparisons for offline cognitive measures was
used. Finally, effect sizes were computed using Cohen’s d taking
into account unequal sample size and variance.

Results
Behavioral Profiling Reveals Two Performance
Subgroups

Latent-profile models specifying between 1 and 5 classes were
estimated on the basis of in-scanner WM performance (1-back, 2-
back, 3-back). The fit indices are reported in Table 1. The BIC sug-
gested that a model with 3 latent subgroups of equal shape and
orientation fitted the data best. The non-significant bootstrapping
results for 4 classes (P = 0.25) indicated no further improvement
when adding one more class. Figure 1A illustrates the 3 latent
subgroups in terms of their performance during the n-back task
(for clarity, histograms for the different groups are also shown for
each task load separately in 1B–D). The figure shows that sub-
group 1 (n = 113, 63%) is the largest group with relatively higher
performance, whereas subgroup 2 (n = 55, 31%) displayed lower
performance. Subgroup 3 (n = 12, 6%) included a few individuals
who performed considerably lower than chance level across all 3
n-back conditions (although this group performed well on the off-
line tasks assessing WM, speed, and episodic memory). It is likely
that this group misunderstood the in-scanner task instructions
and they were excluded from further analyses, leaving two
groups. To further understand the behavioral profile of the two
remaining subgroups, they were compared on 3 different cogni-
tive domains tested outside the scanner (WM, episodic memory,
and processing speed). A 3 (cognitive domain) × 2 (group) ANOVA
revealed a significant task × group interaction for the summary
scores of cognitive functions (F(2332) = 4.16, P = 0.02). Follow-up
group comparisons on the cognitive summary score showed that
the interaction stemmed from the fact that, whereas subgroup 2
consistently exhibited lower performance relative to subgroup 1,
the group difference in offline WM tests (t(166) = −6.36, P < 0.001;
Cohen’s d = 1.47) was twice as large as for speed (t(166) = −4.20,

Table 1 Comparison of Gaussian mixture models on in-scanner
N-back data

Solution N params BIC LRT P

1 class 9 −3848.84
2 class 14 −3785.188 89.62 <0.01
3 class 19 −3741.24 69.91 <0.01
4 class 24 −3758.12 9.09 0.28

Params = parameters; BIC = Bayesian information criterion; LRT = Likelihood

ratio test.

2530 | Cerebral Cortex, 2018, Vol. 28, No. 7

Downloaded from https://academic.oup.com/cercor/article-abstract/28/7/2525/4975482
by Umea University Library user
on 04 July 2018



P < 0.001; Cohen’s d = 0.98) and 3 times as large as for EM (t(166) =
−2.05, P < 0.04; Cohen’s d = 0.49). Table 2 shows group differences
for the individual tasks, and also documents that subgroup 1 out-
performed subgroup 2 in a vocabulary test, a measure of crystal-
lized intelligence that was not factored in the summary scores.
However, on average, the performance of subgroup 1 on the
vocabulary test was not higher than that for an independent ref-
erence sample aged 60–66 drawn from a population-based study
(cf. Lövdén et al. 2013; Table 1). Similarly, mean accuracy on the
in-scanner task for subgroup 1 (1-back 90.5%, 2-back 83.6%, 3-
back 75.1%) did not exceed values reported for an independent,
age-comparative, sample using n-back in the scanner (cf. Nagel
et al. 2011; Fig. 1B). Therefore, from here on, we will refer to sub-
group 1 as “normal” performers, and to subgroup 2 as “low” per-
formers. No significant differences between the two groups were
observed for age, sex (see Supplementary Material for the effect of

sex on other brain measures), education, motor ability, work sta-
tus, or cardiovascular risk factors including nicotine use, high
blood pressure, BMI, and medication usage (Supplementary
Table 2). Group differences in offline WM summary scores were
not accounted for by speed, EM or vocabulary, when those were
included as covariates in a linear regression analysis with group
as main predictor and WM summary score as outcome (β = 0.32,
P < 0.001).

Overall, this suggests that latent profiling of the sample on
basis of the in-scanner performance converge with cognitive
performance measured outside the scanner, such that the
groups were commonly characterized by a pronounced differ-
ence in WM. Nevertheless, when latent profiling was run on the
3 offline WM tests instead, a 2-group solution did not overlap
perfectly with the in-scanner profiling (Supplementary Table 3).
Specifically, 54 out of the 180 subjects received a different group

Figure 1. (A) Working-memory subgroups identified by latent-class analysis based on in-scanner n-back data for sum correct during 1-back, 2-back and 3-back. (B–D)

show histograms separated by load.
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classification depending on whether profiling was computed on
the in-scanner or out-scanner WM data. We therefore report
corresponding statistics for all group comparisons also for the
126 individuals who were classified consistently as low or nor-
mal in both models in Supplementary Table 4. Finally, because
of unequal sample sizes in the two groups, we repeat primary
analyses in subsamples matched in sample size in Supplementary
Table 4.

Group Differences in Functional Brain
Responses
Load-dependent BOLD Response During the n-back
fMRI Task

A significant load (3) × network (3) × group (2) interaction shows
that group differences in load-dependent BOLD response during
n-back differed between networks (F(4664) = 13.54, P < 0.001). A
series of follow-up t-tests comparing fMRI signal at each load
and in each of the 3 networks between groups showed signifi-
cant group differences (P < 0.05, corrected for multiple compari-
sons) in FPN (Fig. 2A), but not in DAN or DMN (Supplementary
Fig. 1): In FPN, up-regulation in response to increasing task
demands was significantly lower for the low-performing sub-
group (2-back vs. 1-back: t(166) = −5.16, P < 0.001; 3-back vs.
1-back: t(166) = −3.48, P < 0.001; Fig. 2B). Analysis of individual
nodes within the FPN revealed that stronger up-regulation from
1-back to 2/3-back in the normal, compared to the low-
performing individuals, was pronounced for lateral frontal nodes
(Supplementary Fig. 2). These results were further corroborated
in a voxel-wise group comparison (Supplementary Fig. 3).

Because groups differed in terms of a measure of crystal-
lized intelligence, the primary analysis was also repeated with
SRB score as a covariate. The load (3) × network (3) × group (2)
interaction remained significant (F(4660) = 9.51, P < 0.001).

Across groups, n-back performance (summed across loads)
was significantly associated with the magnitude of BOLD up-
regulation in FPN nodes from 1-back to 3-back (r = 0.28, P <
0.001). This association was driven by the normal-performing
group (Fig. 2C), demonstrating the usefulness of a data-driven
approach to identify latent subgroups rather than relying on
behavioral data as a continuous measure.

The reported results largely hold for the conservative sub-
sample excluding 54 subjects, and also for subgroups of normal
performers matched in sample size to the low-performing
group (Supplementary Tables 4 and 5).

Functional Connectivity of the FPN Nodes During the
n-Back fMRI Task and Rest

Because group differences in BOLD up-regulation were predomi-
nant for the FPN, we investigated such differences in the func-
tional coupling primarily for this network in a load × group
ANOVA. A main effect of load showed that FPN connectivity
decreased from 1-back to higher task loads (F(2332) = 5.81, P <
0.01; F(2330) = 3.14, P = 0.05 with SRB as covariate; Fig. 3). The cor-
relation matrix of individual task nodes showed that decreases in
FPN connectivity were due to a segregation of the network with
higher task demands that was driven by an uncoupling of ACC
and insular cortex with other nodes in the network (anterior lat-
eral PFC, dlPFC, and lateral parietal cortex, Supplementary Fig. 4).
Adding striatal nodes further showed that anterior PFC, dlPFC and
lateral parietal cortex, collectively (FPNsub) increased coupling
with striatum as a function of load (main effect of load: F(2330) =
5.86, P < 0.01; F(2332) = 4.16, = 0.02 with SRB as covariate; Fig. 3B),
whereas ACC and insular cortex did not (Supplementary Fig. 4). A
main effect of group suggests group differences across loads both
for global FPN coupling (F(1166) = 9.80, P = < 0.01; F(1165) = 8.18,
P < 0.01 with SRB as covariate) and functional connectivity of
FPNsub nodes with striatum (F(1166) = 9.84, P < 0.01; F(1165) =
10.49, P = <0.01 with SRB as covariate). As shown in Fig. 3, FPN
connectivity and FPNsub were lower in the low-performing group
than in the normal group. Unlike the load-dependent BOLD
response, group differences in FPN connectivity did not vary with
increasing task demand for either FPN connectivity (load × group:
F(2330) = 0.71, P = 0.50;, F(2330) = 1.51, P = 0.22 with SRB as covari-
ate; Fig. 3A) or FPNsub connectivity (load × group: F(2332) = 0.24,
P = 0.79; F(2330) = 0.06, P = 0.94 with SRB as covariate). This sug-
gests a “trait-like” group difference in terms of network connectiv-
ity within FPN and between certain FPN nodes and striatum that
is apparent even when the network is taxed very little (i.e., during
1-back). This interpretation was supported by comparing the
groups’ functional coupling of the FPN during resting state, which
also revealed lower connectivity among FPN nodes in the low-
performing compared to the normal group (Fig. 3; t(166) = −2.01,
P = 0.04). However, resting-state FPN connectivity was not linked
to n-back performance (summed across loads) in either the low
group (r = −0.18, P = 0.20) or the normal group (r = 0.13, P = 0.18).

Similar to the results on BOLD activation, no significant
group difference in functional connectivity was found within
DMN at rest (t(166) = 0.74, P = 0.46) and across different load
levels (1-back: t(166) = −0.47, P = 0.64; 2-back: t(166) = 0.45, P =
0.96; 3-back: t(166) = 0.96, P = 0.33). Also, no significant differ-
ence for within-network functional connectivity of DAN was
found at rest (t(124) = −0.94, P = 0.35), however tend-level group
differences were observed across task load in the DAN, with
the low performing subgroups showing trends for lower con-
nectivity among nodes of the DAN than the normal performers
during 1-back (t(166) = −1.78, P = 0.08) and 2-back (t(166) = −1.81,

Table 2 Cognitive performance on the off-line measures for the nor-
mal and low-performing groups classified on in-scanner N-back
performance

Offline test Subgroup Mean SD t Cohen’s d

WM_letter 1 (normal) 35.26 7.20 −3.76* 0.91
2 (low) 29.98 9.12768

WM_numerical 1 (normal) 83.71 15.99 −6.31* 1.51
2 (low) 67.96 13.32

WM_figural 1 (normal) 14.56 5.45 −3.24* 0.73
2 (low) 11.44 6.64

EM_verbal 2 (normal) 13.24 4.16 −1.96 0.46
2 (low) 11.93 3.88

EM_numerical 1 (normal) 3.65 2.47 −1.07 0.25
2 (low) 3.22 2.36

EM_figural 2 (normal) 12.43 3.79 −1.43 0.34
2 (low) 11.58 3.13

PS_verbal 1 (normal) 65.66 15.08 −3.21* 0.75
2 (low) 57.80 14.60

PS_numerical 1 (normal) 73.76 15.25 −3.61* 0.85
2 (low) 64.98 13.85

PS_figural 1 (normal) 30.35 6.26 −2.49* 0.60
2 (low) 27.93 5.06

SRB 1 (normal) 23.65 4.20 −2.96* 0.69
2 (low) 21.62 4.10

WM = working memory; PS = processing speed; EM = episodic memory.
*P < 0.05.
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P = 0.07), and significantly lower connectivity during 3-back
(t(166) = −4.40, P < 0.001).

Functional connectivity data for individual nodes from all net-
works and for all load conditions are reported in Supplementary
Figure 5. They show that group differences across loads are con-
sistently magnified for connections involving the dlPFC and ante-
rior lateral PFC, but these data should be interpreted cautiously
because of a lack of control for multiple comparisons.

Summary measures of head motion did not differ between
the groups (n-back: t(166) = 0.93, P = 0.36; rest: t(166) = 1.45, P =
0.15); thus, the observed differences in FPN and DAN connectiv-
ity were not driven by differences in motion. The reported
results largely hold for the conservative subsample and also for
subgroups of normal performers matched in sample size to that
of the low-performing group (Supplementary Tables 4 and 5).

Group Differences in Structural Brain
Characteristics
Gray-Matter Volume

We then investigated group differences in gray matter (GM) vol-
ume within the FPN. No between-group differences were found
when analyzing averaged GM volume across FPN regions (t(166) =
1.70; P > 0.05), or in corresponding voxel-wise analyses (P >
0.0001, uncorrected). Similarly, no group difference in total GM
volume was observed (t(166) = 1.39; P > 0.05), suggesting com-
parable GM volumes across the two subgroups.

White-Matter Integrity

Next, we probed group differences in white-matter integrity by
comparing FA along 11 major white-matter tracts. Similar to
the differences in FPN connectivity, the low-performing group
exhibited lower FA (t = 3.2, P < 0.005, Cohen’s d = 0.53) along
the external capsule (Fig. 4, upper panel), when compared to
the normal group. By contrast, no significant group differences
were observed for FA along the entire skeleton (t = 1.2, P > 0.05;
Fig. 4, upper panel), or along any other major tracts (Ps > 0.05).

Cerebral Blood Flow

There were no group differences regarding CBF in the FPN (Ps >
0.05 for mean FPN CBF or for CBF of individual FPN ROI seeds).
Examining the groups separately, there was a relationship
between FPN CBF and an offline WM composite score (i.e., a sum-
mary score across 3 WM tasks (Nevalainen et al. 2015)) for the
low-performing group (r = 0.37, P < 0.01), but not for the normal
group (r = −0.10, P = 0.33).

Group Differences in DA D2 Receptor
Availability
We found no significant difference in average DA D2 of FPN
defined based on the Vincent seed (P = 0.3). To further investi-
gate DA D2 differences, we compared whole-brain DA D2 bind-
ing potential (BP) values. As compared to the normal group, the

Figure 2. Load-dependent group differences in BOLD response (A) BOLD response (beta) averaged across nodes of the FPN for each group. BOLD response was aver-

aged across a priori selected ROIs in bilateral anterior and dorsolateral PFC (aPFC, dlPFC), anterior cingulate (ACC), bilateral insula (INS), and bilateral inferior parietal

lobe (PAR), illustrated here for the right hemisphere. (B) Mean BOLD response up-regulation (3back-1back) by group. (C) Correlation between mean BOLD response up-

regulation (3back-1back) and n-back performance (sum of sums for each load) by group. Error bars are standard errors around the means.
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low-performing group showed lower DA D2 BP in DLPFC (xyz =
−26 40 26, t = 3.32, P = 0.0005, k = 45, Cohen’s d = 0.62; Fig. 4,
lower panel). No group difference in DA D2 BP was observed in
striatum even at a liberal threshold (P > 0.05). Note also that
there was no relationship between CBF and DA D2 in the
detected peak (r = 0.01, P = 0.92), suggesting that DA D2 BP dif-
ference in dLPFC is unlikely to be driven by local group differ-
ences in vascular physiology.

Group Differences in Demographic, Vascular,
and Genetic variables
We compared the two subgroups across different demographic
variables, cardiovascular risk factors, and for being carriers of bene-
ficial or non-beneficial allelic variants of selected dopaminergic
SNPs. No group differences were observed for systolic or diastolic
blood pressure or BMI, suggesting that the two groups were com-
parable on these factors. Furthermore, there were no marked
group differences in frequencies of allelic variants of the C957T,
COMT, DARPP32, and VMAT2 SNPs, when assessed separately.
However, when considering them together as an aggregated gene
score, the low-performing group showed a trend of having less
beneficial alleles than the normal group (mean score: 1.94 ± 0.81
for low and 2.19 ± 0.77 for normal group; t(163) = −1.89, P = 0.06).
Interestingly, this trend-level difference turned out to be significant
(mean score: 1.88 ± 0.78 for the low and 2.22 ± 0.76 for the normal
group; t(121) = −2.20, P = 0.030) for the conservative grouping.

The reported results for white matter integrity, perfusion,
DA largely hold for the conservative grouping that excluded 54
subjects (Supplementary Table 4).

Discussion
The primary goal of this study was to examine individual differ-
ences in WM performance and their brain correlates in a large
age-homogenous cohort of healthy adults in their mid-60s, a
time at which cognitive decline typically begins (Rönnlund et al.
2005; Gorbach et al. 2016).

Using LPA on in-scanner n-back performance, two dominant
subgroups were identified. One of these included a large group of
individuals that performed around the sample mean, whereas
the other group performed at a lower level. Past work indicates
substantial inter-individual differences in WM performance for
both younger (Nagel et al. 2009, 2011) and older (Nyberg et al.
2013) adults, but with relatively large age bins within each group
(e.g., 20–40 years-old in the younger group; 60–80 years-old in old-
er group). Our findings extend previous reports by demonstrating
considerable inter-individual variability in WM performance also
within a narrow age bin of older adults.

Individual differences in WM performance have been linked
to differences in activation and connectivity within the FPN
(Osaka et al. 2003, 2004; Vogel et al. 2005; Nagel et al. 2009, 2011).
Our results for BOLD responsivity within the canonical FPN WM
revealed that the degree of load-dependent modulation in the
FPN was greater in the normal compared to the low-performing

Figure 3. Group differences in functional connectivity of the nodes of the frontal-parietal network during n-back. (A) Mean functional connectivity in FPN for each

load and rest for each subgroup. Functional connectivity was computed as the average correlation coefficient across all 9 × 9 pairwise correlations in the bilateral

anterior and dorsolateral PFC (aPFC, dlPFC), anterior cingulate (ACC), bilateral insula (INS), and bilateral inferior parietal lobe (PAR). (B) Mean functional connectivity

between select nodes of FPN and striatuam, plotted for each load and rest for each subgroup. Functional connectivity was computed as the mean correlation coeffi-

cient of aPFC, dlPFC, and PAR with caudate and putamen (STR). Mean connectivity differences between load conditions for individual nodes are contained in

Supplementary Figure 4. Error bars are standard errors around the means.

2534 | Cerebral Cortex, 2018, Vol. 28, No. 7

Downloaded from https://academic.oup.com/cercor/article-abstract/28/7/2525/4975482
by Umea University Library user
on 04 July 2018



subgroup. Moreover, both the ROI and voxel-wise analyses
yielded a neural correlate of group by WM load in FPN, particu-
larly for the DLPFC. The combined observations that resting FPN
CBF, and WM performance were coupled in the low-performing
group, and that this group failed to express a load-dependent
vascular response support the view that resting blood flow
becomes more indicative of the amount of neural resources
that can be assigned to a task when the maximum capacity is
reached. The observed difference in FPN response may reflect
not only differences in the amount of storage space, but also
individual differences in consistently deploying attentional
control over what is stored in WM (Adam et al. 2015). On this
view, the low-performing subgroup might have more difficulty
ignoring distracting information (Fukuda and Vogel 2011;
Eriksson et al. 2015).

Results from functional connectivity analyses during n-back
revealed lower connectivity within the FPN and DAN in the
low-performing compared to the normal group across all load
levels. A similar group difference in resting-state connectivity
was observed for FPN, but not for DAN, suggesting state-
invariant and state-dependent differences in FPN and DAN
between groups, respectively. This finding adds to an emerging

literature that task-free fMRI can only uncover parts of the rele-
vant individual differences in brain function (Geerligs et al.
2015; Avelar-Pereira et al. 2017; Campbell and Schacter 2017).
The trait-like nature of FPN connectivity is also in agreement
with reports of stable inter-individual differences in WM over
time (Kane and Engle 2002). A trend for decreases in FPN con-
nectivity at higher cognitive loads (2-back and 3-back) com-
pared with the lower cognitive load (1-back) (Fig. 3B) was found
in both subgroups. This finding is in line with a previous study,
which reported a similar trend for FPN modularity (Liang et al.
2016). Here, we provide new evidence that decreases in FPN
connectivity with increasing load reflect a segregation of the
FPN network nodes, such that DLPFC, lateral anterior PFC, and
lateral parietal areas increase coupling with striatum with
increased task loads, whereas insula and ACC do not. These
patterns of network segregation with increased task demands
would not be revealed in voxel-wise analyses (e.g., Nagel et al.
2009), which selectively look only for the increases common to
a set of nodes.

In line with the idea that resting-state functional connectiv-
ity may, to some extent, reflect underlying structural connec-
tivity (Damoiseaux and Greicius 2009; Greicius et al. 2009), our

Figure 4. Group differences in white-matter integrity (upper panel) and DA D2 BP in frontal cortex (lower panel) *P < 0.005. Error bars are standard errors around the

means.
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structural connectivity analyses revealed a selective group dif-
ference along the external capsule, with the low-performing
subgroup showing lower white-matter integrity. The external
capsule is part of a dense bundle connecting the prefrontal,
parietal, and temporal cortex (Charlton et al. 2010). Critically,
the integrity of this tract is a strong correlate of WM perfor-
mance (Charlton et al. 2010). Note that our DTI analysis was
exploratory and we found no group difference elsewhere. It is
noteworthy that while using conservative grouping, we addi-
tionally found a group-difference along the left superior longitu-
dinal fasciculus (Supplementary Table 4) which is strongly
linked to the FPN circuit (Ostby et al. 2011). Our connectivity
analyses suggest that lower white-matter integrity in one of the
tracts which is linked to fronto-parietal circuit might be linked
to lower functional coupling among key WM regions, which is
reflected in less efficient up-regulation of activity during the task
and lower WM performance. Latent profiling further suggested
that around 30% of older adults show this specific deficit, which
prompted us to investigate possible neurobiological markers
that could further characterize this group.

Utilizing information from a PET scan, we discovered lower
DA D2 availability in the DLPFC region of the FPN in the low-
performing compared to the normal group. These results are in
line with pharmacological work suggesting that D2 receptor
agonists and antagonists might affect different aspects of WM
performance (Mehta et al. 2004; van Holstein et al. 2011). Note
that, although extrastriatal D2DR availability has been detected
with [11C] raclopride (Garraux et al. 2007; Sawamoto et al. 2008),
and with high test–retest reliability (Alakurtti et al. 2015), this
low-affinity ligand is not ideal for imaging of extrastriatal D2
receptors. However, the reported DA D2 binding values for the
DLPFC were in the expected range (10% of caudate levels (Hall
et al. 1994)). The signal was positive and significantly higher
compared with the receptor-free cerebellar region and without
any confounding relationship to regional CBF. Our results of
lower DA D2 receptor availability in DLPFC in the low-
performing subgroup with lower fronto-parietal integrity, along
with a trend toward a less beneficial DA gene profile, extend
previous results of lower frontal efficiency in individuals with
genetic predispositions for lower synaptic DA levels in prefron-
tal cortex (Nyberg et al. 2013). Whereas inferences on DA sys-
tem integrity were based on individual differences in COMT
val/met allele composition only in Nyberg et al. (2013), here DA
receptor availability was directly measured using PET. Notably,
the contribution of the PET-derived measure of D2 receptor
availability to WM is likely due to the modulatory effects of D2
receptors on updating processes (for review, see D’Esposito and
Postle 2015). By contrast, animal data suggest that maintenance
of representations in WM is more related to the D1 receptor
system (Sawaguchi, 2001; Wang, Vijayraghavan and Goldman-
Rakic, 2004). Finally, our group difference in DA D2 of DLPFC
should be interpreted with caution, given the nature of the
voxel-wise analysis of binding potential, which might be
affected by some confounding factors such as signal drop out.

Results of individual differences in in-scanner WM perfor-
mance mapped well with differences in the offline cognitive
measure. The low-performing group performed worse than the
normal group on all WM and processing speed tasks, although
the groups performed quite comparable on the episodic mem-
ory tasks. The fact that the two groups showed similar differ-
ences on the WM and speed tasks is consistent with the notion
that the speed with which adequate internal representations
can be established is a critical factor for WM functioning
(Salthouse 1994; Ackerman et al. 2002; Colom 2004). Similarly,

despite lower structural and functional connectivity within the
FPN and lower DA D2 receptor availability in the DLPFC, the
low-performing subgroup were comparable to the normal
group in brain measures relevant for episodic memory (i.e.,
DMN structural and functional connectivity, and hippocampal
volume). These findings suggest that the low-performing indi-
viduals have a specific WM impairment, but a relatively intact
episodic memory system. That said, it should be noted that the n-
back task is complex and taxes many processes, such as response
inhibition. Thus, the group difference in WM might be partly influ-
enced by a difference in response inhibition. Although LPA was a
fairly successful approach to identify different WM subgroups
based on n-back data, an alternative model based on the 3 WM off-
line tests only partially overlapped with the initial model
(Supplementary Table 4). This suggests that some aspects of the n-
back data might be different from the offline WM tests.

In conclusion, our findings provide novel and converging
evidence for the existence of a subgroup of older adults with
impaired WM functioning characterized by reduced cortico-
cortical communication and altered neurochemical signatures
within the FPN.
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